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Abstract

Nearest-neighbour (NN) and k-nearest-neighbours (k-NN) techniques are widely used in many pattern recognition

classification tasks. The linear approximating and eliminating search algorithm (LAESA) is a fast NN algorithm which

does not assume that the prototypes are defined in a vector space; it only makes use of some of the distance properties

(mainly the triangle inequality) in order to avoid distance computations.

In this work we propose an improvement of LAESA that uses k neighbours in order to approach to the accuracy of a

k-NN classifier, and computes the same number of distances than the LAESA preserving the time and space complexity

independent from k.
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1. Introduction

Nearest-neighbour (NN) classification is one of

the most widely used non-parametric techniques in

pattern recognition (Duda and Hart, 1973). Given

an unknown sample x, this technique finds the

prototype p in the training set P which is closest

to x, then it classifies x in the same class as p.
Sometimes it is possible to reduce error rates using

a number k of NNs instead of only one. Thus, a

k-nearest-neighbour (k-NN) classifier finds the k-

NNs of the sample x, and then, through a voting

process, classifies x in the class which has most

representatives among those k-NNs.

A simple implementation of those classifiers

consists on an exhaustive search, computing all the

distances between the sample and each prototype

in the training set. When the distance computation
is time expensive and/or the training set is large

this technique can be impractical.

There is a wide number of fast NN and k-NN

search algorithms. Most of them require the pro-

totypes to be defined in a vector space (such as for

instance kd-tree (Bentley, 1975)). In this work we

are interested on algorithms that can work with

any distance properly defined. That is, the distance

*Corresponding author. Tel.: +3-4965-903-400; fax: +3-

4965-903-434.

E-mail addresses: paco@dlsi.ua.es (F. Moreno-Seco),

mico@dlsi.ua.es (L. Mic�oo), oncina@dlsi.ua.es (J. Oncina).

0167-8655/03/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0167-8655 (02 )00187-3

Pattern Recognition Letters 24 (2003) 47–53

www.elsevier.com/locate/patrec

mail to: paco@dlsi.ua.es


function dð�; �Þ has to fulfill the following proper-
ties:

(1) dðx; xÞ ¼ 0
(2) dðx; yÞ ¼ dðy; xÞ
(3) dðx; yÞ6 dðx; zÞ þ dðz; yÞ (triangle inequality)

Note that we are not assuming the points

to have any particular structure; therefore, the

prototypes can be represented by strings, graphs,

tables or any other data structure.

Several algorithms such as Fukunaga and

Narendra’s (1975), Kalantari and McDonald’s

(1983), approximating and eliminating search al-
gorithm, AESA (Vidal, 1986), linear approximat-

ing and eliminating search algorithm, LAESA

(Mic�oo et al., 1994), TLAESA (Mic�oo et al., 1996)
and RCNN (Lee and Chae, 1998) 1 among others

have been developed in order to find the NN in

metric spaces using a low number of distance

computations (see Ramasubramanian and Paliwal,

2000 for a comparison with some of those algo-
rithms).

AESA makes use of a table of the distances

from each prototype to all the other prototypes.

This makes the space complexity quadratic and the

algorithm unusable in many practical situations.

LAESA was introduced to avoid this need. It has

a linear space complexity but increases slightly the

number of distance computations (nd). This makes
the algorithm very useful when the distance com-

putation is very time consuming and the training

set is large.

The AESA was extended to find the k-NN

(Aibar et al., 1993). A similar modification can be

used in LAESA to obtain the k-LAESA. The

problem on these versions is that the number of

distances grows quickly with k.
In this paper, we present an improvement of the

LAESA to use k neighbours to classify the sample

in order to approximate the error rate of a k-NN

classifier, while maintaining the LAESA number

of distances.

This extension retains the main properties of

LAESA:

• it is suitable for any metric space, e.g. it does
not require a vector-space of representation,

• it has Oðnþ nd log nÞ worst-case time and OðnÞ
space complexities with respect to the training

set size n and the number of distance computa-

tions nd, and
• it calculates the same number of distances than

LAESA.

In the next section the LAESA algorithm is

described along with the extension presented in

this paper, the Approximating k-LAESA (Ak-

LAESA). The following section describes the

experiments and in the last section the conclu-

sions are given and an outline of some future work

is described.

2. The LAESA and Ak-LAESA algorithms

2.1. The LAESA algorithm

In order to avoid distance computations LAE-

SA, 2 in a preprocessing step, computes and stores

the distance from a subset of the prototypes (called

base prototypes) B to each prototype in the train-

ing set P. Those distances are used to compute a

lower bound function gð�; �Þ of the distance from
each prototype p to the sample x.
Let us suppose that the distance from a base

prototype b to the sample is known. Then, ap-

plying the triangle inequality, jdðp; bÞ � dðb; xÞj is a
lower bound of dðp; xÞ (see Fig. 1). This bound can
be generalised by taking the maximum over all the

base prototypes. Then the lower bound function

gð�; �Þ can be defined as:

gðp; xÞ ¼ max
b2B

jdðp; bÞ � dðb; xÞj; ð1Þ

1 Although this algorithm is presented using vector proto-

types, it does not require explicitly a vector space representation

(it only makes use of inter-prototype distances), so it could also

be used with more general metric spaces.

2 There are some versions of the LAESA, here the simplest

one, known as the EC1-LAESA, is used.
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Note that the distances dðb; xÞ 8b 2 B have to be
computed before the use of the lower bound. In

the LAESA, the lower bound is also used to find a

candidate NN. If the lower bound is bigger than

the distance from the candidate prototype to the

sample, then this prototype is eliminated and a
distance computation is avoided.

Obviously, this lower bound is only useful if its

computation is cheaper than the distance compu-

tation times the number of the avoided distance

computations. As the number of base prototypes is

fixed before classification starts, the time com-

plexity of the lower bound computation is OðnÞ, so
this computation does not increase the time com-
plexity of the algorithm.

The only remaining question is how many and

which base prototypes to choose. The number of

base prototypes has to be adjusted through some

preliminary experiments. It has been shown that it

does not depend much on the training set size but

rather on the intrinsic dimensionality of the data.

The best criterium so far to select the base proto-
types is to choose them so that they are maximally

separated. 3 The algorithm from Fig. 2 shows how

to select nbp base prototypes so that they are

maximally separated.

The LAESA algorithm, which combines all of

these ideas, can be described as in Fig. 3.

The Oðnþ nd log nÞ worst-case time complexity
comes from the line 3 of the algorithm, which can

be implemented creating a heap (OðnÞ) and then
extracting nd elements from it (nd log n). As ex-
periments in Mic�oo et al. (1994) show, nd is usually
much lower than n. In practice, the time expended

in this step is not actually a bottleneck compared

to the time expended in distance computations or
lower bound computations, so line 3 can also be

implemented by sorting the array of lower bounds

O(ðn log nÞ) instead of implementing a heap.

2.2. The Ak-LAESA algorithm

Ak-LAESA is a simple but powerful modifica-

tion of the LAESA algorithm. The aim of this new
algorithm is to achieve classification rates similar

to those of a k-NN classifier, using k neighbours

that may not be the k-NNs and preserving the

main properties of LAESA (distance computa-

tions and time and space complexities).

In LAESA each time a distance is computed its

value is used to update the NN candidate. In Ak-

LAESA all the values of the distance computa-
tions in line 3b are stored, and simply the best k

prototypes according to these stored distances

are chosen to vote the class of the sample. These k

prototypes are not necessarily the k nearest ones

because the algorithm is stopping (line 3a) when

the lower bound of the remaining prototypes is

bigger than the actual distance to the nearest

prototype instead of the kth one. Please note that
Ak-LAESA computes the same number of dis-

tances than LAESA, but makes use of the closest k

prototypes whose distance has been computed to

Fig. 2. Selection of base prototypes in the LAESA algorithm.
Fig. 1. The lower bound gðp; xÞ of the distance from p to x is

computed as jdðp; bÞ � dðb; xÞj. The distance dðb; pÞ is precom-
puted during the preprocessing step.

3 In Mic�oo et al. (1994) a greedy algorithm is proposed for

selection of base prototypes approximately maximally separated

in OðnÞ, with similar classification results.
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classify the sample, instead of using only the NN.

The next section shows that the Ak-LAESA pro-

duces similar classification results than using the

k-NN.

3. Experiments

In order to test the algorithm two different tasks

were performed. The first task involved synthetic

clustered data in a Euclidean space. Of course, fast

NN algorithms specialised in Euclidean distance

can beat Ak-LAESA in this task. The task is in-

cluded just to show the soundness of Ak-LAESA

in a well-known task where the dimensionality and
other characteristics of the data are under control.

The second task is devoted to test Ak-LAESA

in a real data situation. In this task contour chains

of handwritten digits are used as points and the

edit distance is used for comparison (no Euclidean

distance is possible in this case).

3.1. Synthetic data experiments

Using synthetic data, two experiments have

been performed. The first one was made to com-

pare the classification power of Ak-LAESA with

respect to k-NN classifiers. The second set of

experiments studies the evolution of Ak-LAESA

error rates as the value of k increases, and com-

pares it with k-NN evolution.
All the experiments used synthetic data ob-

tained using the Jain and Dubes (1988) algorithm.

Given n, d, r2, nmin, Io and c, this algorithm pro-

duces n points in a d-dimensional unit hypercube

arranged in c spherically shaped Gaussian classes

with a variance r2 having an overlap between pairs
of classes lower than Io (Bayes error). Each class
has a minimum of nmin elements.
The parameters Io and r2 were set to 0:04 and

0:05 respectively in order to obtain error rates
lower than 10% with a NN classifier and nmin was
set to n=c (all classes have equal size). All the ex-
periments were repeated for different dimensio-

nalities (6, 10 and 14) with similar results, but only

results for dimensionality 10 have been presented

in order to avoid redundancy. The algorithm seems

to perform better as dimensionality grows, but this

behaviour may be due to the use of Gaussian

distributions in these experiments.

All the experiments were repeated 16 times for
each pair of training and test set sizes. While the

size of the training set was variable, the size of

the test set was always 1024. The average and the

standard deviation are shown in the plots. All the

experiments were repeated for data from several

number of classes, but only results for 4 and 8

classes will be reported here.

The Ak-LAESA has two parameters: the value
of k and the number of base prototypes (see Sec-

tion 2). In the first set of experiments the number

of base prototypes was borrowed from previous

works. In Mic�oo et al. (1994) it was found that for a
10-dimensional Euclidean space the optimum is 48

base prototypes.

In this set of experiments k ¼ 11 was chosen.
The following set of experiments study how the
parameter k affects the error rate.

The first set of experiments were developed to

compare the error rates of A11-LAESA with NN

and 11-NN, with increasing training set sizes of

256, 512, 768, 1024, 1536, 2048, 3072 and 4096. As

Fig. 3. The LAESA algorithm.
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Fig. 4 shows, the error rate of A11-LAESA is al-

ways very close to the rate of a 11-NN classifier.

The error rate of a NN classifier has been also

plotted as a reference. Fig. 5 plots the average

number of distance computations of A11-LAESA

for data from 4 and 8 classes.

From those plots it can be concluded that the

Ak-LAESA has a very similar classification power
than the k-NN computing drastically less distances

(
2.5% of the total and decreasing as the training
set increases).

The second set of experiments was designed to

study the behaviour of Ak-LAESA as the value of

k increases, and to compare this behaviour with

k-NN. These experiments used sets of 2048 pro-

totypes for training, and sets of 1024 prototypes
for test, as in the previous experiment. The range

of values for k was 1–100. As shown in Fig. 6, the
behaviour of Ak-LAESA as the value of k in-

creases is similar to that of k-NN for small values

of k.

Fig. 4. Error rates of the A11-LAESA classifier using 4 and 8

classes compared to NN and 11-NN classifiers when the size of

the training set increases.

Fig. 5. Distance computations of Ak-LAESA for 4 and 8

classes.

Fig. 6. Error rates of the Ak-LAESA classifier using 4 and 8

classes compared to the k-NN classifier when k increases.
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When the value of k becomes greater than ap-

proximately 20, the error rate of Ak-LAESA in-

creases. This is probably due to the fact that, for

2048 prototypes, around 40 distances to non-base

prototypes are computed. From these 40 non-base

prototypes, k have to be selected in order to vote
the class of the sample. If k is large enough the

worst prototypes will enter in the voting pool.

Further studies have to be done in this subject;

until now one has to be careful choosing k.

3.2. Real data experiments

These experiments are a repetition of the ex-
periments performed in (Mic�oo and Oncina, 1998)
in order to show the behaviour of LAESA. These

experiments have been performed using hand-

written digits from the NIST Special Database 3.

Each 128� 128 image was first reduced to a 64 �
64 image and then the contour of each image was

codified as an 8-direction string. The edit distance,

using a substitution weight proportional to the
difference angle of the directions has been used to

classify the samples.

In the same way than in the original work the

looseness technique is also used in order to reduce

the number of distance computations. Intuitively,

the loosenessH is a small value which is subtracted

from dðpmin; xÞ in order to allow less distances to be
computed. Then the comparison in line 3a of the
LAESA algorithm:

if gðp; xÞ > dðpmin; xÞ stop the algorithm

has been changed to

if gðp; xÞ > dðpmin; xÞ � H stop the algorithm

In Mic�oo and Oncina’s (1998) work was determined
that the optimal looseness for this problem is 0.06

and that the optimal number of base prototypes
is 40.

Two different experiments have been per-

formed: first, we have made a comparison of Ak-

LAESA, with (H ¼ 0:06) and without looseness
(H ¼ 0), and k-NN error rates for increasing val-

ues of k. The training and test sets sizes were over

8000 and 1000 strings respectively. Each algorithm

has been tested with nine different training/test
sets. Fig. 7 shows the behaviour of Ak-LAESA

without looseness, Ak-LAESA with a looseness of
0.06, and k-NN. The error rate of Ak-LAESA

Fig. 7. Comparison of error rates for handwritten digits.

Fig. 8. Distances computed and classification times as training

set increases.
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with looseness is higher because it is pruning good

candidates to NN. Anyway, the difference is al-

ways <1% error.

The second experiment was developed to

compare the number of computed distances

(and classification times) of both algorithms for
increasing training set sizes. These sizes range from

1000 to 8000, with 1000 test samples. Fig. 8 shows

the results obtained for k ¼ 3 (results for other
values of k were similar). Although introducing

looseness slightly increases error rates (<1% in our
experiments), the important gaining in distances 4

and times makes this idea worth considering seri-

ously.

4. Conclusions

In this work we have presented the Ak-LAESA,

a fast classifier for general metric spaces (no vector

space required) based on the LAESA algorithm. It

obtains error rates very close to those of a k-NN
classifier, while calculating a much lower number

of distances (the number of distances of the Ak-

LAESA algorithm is exactly the same that the

computed by the LAESA algorithm). The ade-

quate time and space complexities of LAESA have

been preserved.

As for the future, we plan to study in depth the

reason of the increase of the error rate whit respect
to the k-NN when the k is beyond a limit. We are

also interested in applying the algorithm to other

real data tasks.
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